1,006 research outputs found

    Self-optimizing load balancing with backhaul-constrained radio access networks

    Get PDF
    Self-Organizing Network (SON) technology aims at autonomously deploying, optimizing and repairing the Radio Access Networks (RAN). SON algorithms typically use Key Performance Indicators (KPIs) from the RAN. It is shown that in certain cases, it is essential to take into account the impact of the backhaul state in the design of the SON algorithm. We revisit the Base Station (BS) load definition taking into account the backhaul state. We provide an analytical formula for the load along with a simple estimator for both elastic and guaranteed bit-rate (GBR) traffic. We incorporate the proposed load estimator in a self-optimized load balancing algorithm. Simulation results for a backhaul constrained heterogeneous network illustrate how the correct load definition can guarantee a proper operation of the SON algorithm.Comment: Wireless Communications Letters, IEEE, 201

    Self Organizing strategies for enhanced ICIC (eICIC)

    Get PDF
    Small cells have been identified as an effective solution for coping with the important traffic increase that is expected in the coming years. But this solution is accompanied by additional interference that needs to be mitigated. The enhanced Inter Cell Interference Coordination (eICIC) feature has been introduced to address the interference problem. eICIC involves two parameters which need to be optimized, namely the Cell Range Extension (CRE) of the small cells and the ABS ratio (ABSr) which defines a mute ratio for the macro cell to reduce the interference it produces. In this paper we propose self-optimizing algorithms for the eICIC. The CRE is adjusted by means of load balancing algorithm. The ABSr parameter is optimized by maximizing a proportional fair utility of user throughputs. The convergence of the algorithms is proven using stochastic approximation theorems. Numerical simulations illustrate the important performance gain brought about by the different algorithms.Comment: Submitted to WiOpt 201

    Load Balancing Congestion Games and their Asymptotic Behavior

    Get PDF
    A central question in routing games has been to establish conditions for the uniqueness of the equilibrium, either in terms of network topology or in terms of costs. This question is well understood in two classes of routing games. The first is the non-atomic routing introduced by Wardrop on 1952 in the context of road traffic in which each player (car) is infinitesimally small; a single car has a negligible impact on the congestion. Each car wishes to minimize its expected delay. Under arbitrary topology, such games are known to have a convex potential and thus a unique equilibrium. The second framework is splitable atomic games: there are finitely many players, each controlling the route of a population of individuals (let them be cars in road traffic or packets in the communication networks). In this paper, we study two other frameworks of routing games in which each of several players has an integer number of connections (which are population of packets) to route and where there is a constraint that a connection cannot be split. Through a particular game with a simple three link topology, we identify various novel and surprising properties of games within these frameworks. We show in particular that equilibria are non unique even in the potential game setting of Rosenthal with strictly convex link costs. We further show that non-symmetric equilibria arise in symmetric networks. I. INTRODUCTION A central question in routing games has been to establish conditions for the uniqueness of the equilibria, either in terms of the network topology or in terms of the costs. A survey on these issues is given in [1]. The question of uniqueness of equilibria has been studied in two different frameworks. The first, which we call F1, is the non-atomic routing introduced by Wardrop on 1952 in the context of road traffic in which each player (car) is infinitesimally small; a single car has a negligible impact on the congestion. Each car wishes to minimize its expected delay. Under arbitrary topology, such games are known to have a convex potential and thus have a unique equilibrium [2]. The second framework, denoted by F2, is splitable atomic games. There are finitely many players, each controlling the route of a population of individuals. This type of games have already been studied in the context of road traffic by Haurie and Marcotte [3] but have become central in the telecom community to model routing decisions of Internet Service Providers that can decide how to split the traffic of their subscribers among various routes so as to minimize network congestion [4]. In this paper we study properties of equilibria in two other frameworks of routing games which exhibit surprisin

    Applying branching processes to delay-tolerant networks

    Get PDF
    Mobility models that have been used in the past to study delay tolerant networks (DTNs) have been either too complex to allow for deriving analytical expressions for performance measures, or have been too simplistic. In this paper we identify several classes of DTNs where the dynamics of the number of nodes that have a copy of some packet can be modeled as branching process with migration. Using recent results on such processes in a random environment, we obtain explicit formulae for the first two moments of the number of copies of a file that is propagated in the DTN, for quite general mobility models. Numerical examples illustrate our approach

    Distributed coordination of self-organizing mechanisms in communication networks

    Get PDF
    The fast development of the Self-Organizing Network (SON) technology in mobile networks renders the problem of coordinating SON functionalities operating simultaneously critical. SON functionalities can be viewed as control loops that may need to be coordinated to guarantee conflict free operation, to enforce stability of the network and to achieve performance gain. This paper proposes a distributed solution for coordinating SON functionalities. It uses Rosen's concave games framework in conjunction with convex optimization. The SON functionalities are modeled as linear Ordinary Differential Equation (ODE)s. The stability of the system is first evaluated using a basic control theory approach. The coordination solution consists in finding a linear map (called coordination matrix) that stabilizes the system of SON functionalities. It is proven that the solution remains valid in a noisy environment using Stochastic Approximation. A practical example involving three different SON functionalities deployed in Base Stations (BSs) of a Long Term Evolution (LTE) network demonstrates the usefulness of the proposed method.Comment: submitted to IEEE TCNS. arXiv admin note: substantial text overlap with arXiv:1209.123

    A hybrid decision approach for the association problem in heterogeneous networks

    Full text link
    The area of networking games has had a growing impact on wireless networks. This reflects the recognition in the important scaling advantages that the service providers can benefit from by increasing the autonomy of mobiles in decision making. This may however result in inefficiencies that are inherent to equilibria in non-cooperative games. Due to the concern for efficiency, centralized protocols keep being considered and compared to decentralized ones. From the point of view of the network architecture, this implies the co-existence of network-centric and terminal centric radio resource management schemes. Instead of taking part within the debate among the supporters of each solution, we propose in this paper hybrid schemes where the wireless users are assisted in their decisions by the network that broadcasts aggregated load information. We derive the utilities related to the Quality of Service (QoS) perceived by the users and develop a Bayesian framework to obtain the equilibria. Numerical results illustrate the advantages of using our hybrid game framework in an association problem in a network composed of HSDPA and 3G LTE systems.Comment: 5 pages, 4 figures, IEEE Infocom, San Diego, USA, March 2010

    Multilevel Pricing Schemes in a Deregulated Wireless Network Market

    Full text link
    Typically the cost of a product, a good or a service has many components. Those components come from different complex steps in the supply chain of the product from sourcing to distribution. This economic point of view also takes place in the determination of goods and services in wireless networks. Indeed, before transmitting customer data, a network operator has to lease some frequency range from a spectrum owner and also has to establish agreements with electricity suppliers. The goal of this paper is to compare two pricing schemes, namely a power-based and a flat rate, and give a possible explanation why flat rate pricing schemes are more common than power based pricing ones in a deregulated wireless market. We suggest a hierarchical game-theoretical model of a three level supply chain: the end users, the service provider and the spectrum owner. The end users intend to transmit data on a wireless network. The amount of traffic sent by the end users depends on the available frequency bandwidth as well as the price they have to pay for their transmission. A natural question arises for the service provider: how to design an efficient pricing scheme in order to maximize his profit. Moreover he has to take into account the lease charge he has to pay to the spectrum owner and how many frequency bandwidth to rent. The spectrum owner itself also looks for maximizing its profit and has to determine the lease price to the service provider. The equilibrium at each level of our supply chain model are established and several properties are investigated. In particular, in the case of a power-based pricing scheme, the service provider and the spectrum owner tend to share the gross provider profit. Whereas, considering the flat rate pricing scheme, if the end users are going to exploit the network intensively, then the tariffs of the suppliers (spectrum owner and service provider) explode.Comment: This is the last draft version of the paper. Revised version of the paper accepted by ValueTools 2013 can be found in Proceedings of the 7th International Conference on Performance Evaluation Methodologies and Tools (ValueTools '13), December 10-12, 2013, Turin, Ital
    • 

    corecore